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Welcome back to this continuation on Introduction to Design of Experiments. We will 

start with the simple example definitely a fictitious one. 
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So, I am presenting data in a table which contains the runs scored by a batsman in the 

game of cricket, I hope all of you know this game and know its rules. There are two 

innings and the batsman gets two chances in a match, first innings and second innings. 

So, the scores are listed in the last column. And in this experiment, what we are trying to 

do is find out whether the type of drink a person has or the batsman has before coming 

out to play influences his performance. Another factor we are considering is the weight 

of the bat he uses. Normally, we will think that the type of drink he has had or the weight 

of the bat he is using will be independent, but it may so happen that they may affect one 

another or there may be an interaction between the two factors that is what we are going 

to demonstrate in this example. 



 

 

This example has been analyzed using mini tab software; this is a statistical analysis 

software. It also includes the design of experiments. You can download a trial version 

and check this for yourself. So, we have the type of bat or the weight of the bat in the 

first or the second column, you can have light bat and heavy bat, and then the batsman 

drinks beer, I don’t know whether it is allowed in India by I think in foreign countries 

these things are pretty common. So, the batsman might have had beer before coming out 

to play, just to put him in good mood or he might have had tea, if he is of the serious 

type. So, these are the runs scored and you can see that there is a considerable variance in 

the run scored by the batsman. 
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And you can see that the type of the drinkers represented on the vertical scale, and the 

type of the bat or the weight of the bat is shown on the horizontal scale. So, this is the 

average performance of the batsman, when he is having a light bat and beer and this is 

the average performance of the batsman, when he is having a light bat and tea. You can 

see 24 is the average performance of the batsman when he is having tea and heavy bat; 

and then beer and heavy bat the average performance is the highest at 51. 
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So, let’s analyze this further. You can see that this is the main effects plot; this is the 

effect of the bat alone and the effect of the drink alone. So, it might appear when a 

batsman is going from a light bat to heavy bat, the average performance improves, and 

when he is going from beer to tea the average performance improves, but this just not tell 

us the complete picture. 
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Okay so, we have to see the interaction. Now this is very interesting. When a batsman is 

going from beer to tea the performance is increasing, when he is using a light bat; but 

when he is using a heavy bat, the combination of beer and heavy bat leads to better 

performance than the combination of heavy bat and tea okay. So obviously, under the 

influence of the alcohol, the batsman is able to swing more wildly and connects more 

often than not and then scores more runs who knows, but this is an example where there 

is a strong interaction between the type of the drink and the weight of the bat. 

If there had been no interaction between the two variables then the two lines would have 

been parallel. So, when you do your design of experiments, don’t look at only the single 

effect or the single factor plots; look at the interaction plots. And if the interaction plots 

are parallel then the variables are not interacting with one another, but if they intersect or 

they approach one another or they diverge from each other, then it shows that there is an 

interaction. So, it’s a very interesting and important aspect to consider in the design of 

experiments. 

(Refer Slide Time: 05:21) 

 

So, let us define the interaction effects. If the change in level of the first factor causes a 

certain change in output response at one level of the second factor, an identical change in 

the first factor level at the second level of second factor will produce a markedly 



 

 

different output response. So, you may want to read this couple of times to understand it 

fully. All it says is when you go from one level to another level for a particular factor, the 

response depends upon what level you have fixed for the second factor. If the level you 

have fixed for the second factor makes a difference then the two variables are set to 

interact. 
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By now we know what is meant by ANOVA table. So, we have listed the source of 

variation; A treatments, B treatments and then the interaction between the two 

treatments. The difference between the earlier ANOVA table and the current one is that 

now we are dealing with two variables, and we also have to consider the interactions 

between the two variables. So, we find the sum of squares of the deviations for the A 

treatment, for the B treatment and also for the interaction. And we scale each of the sum 

of squares by the appropriate degrees of freedom; A is the number of levels for factor-a, 

B is the number of levels for factor-b. So, we subtract 1 from a and 1 from b and then we 

divide the sum of squares of a by a minus 1 sum of squares of b by b minus 1 to get the 

mean squares that is what is presented here. 

Similarly, we also get to know that the degrees of freedom for the interaction between a 

and b is a minus 1 times b minus 1 and so you have the mean squares as sum of squares 



 

 

of ab by a minus 1 into b minus 1. So, these are representing the variations caused by the 

actual experiments. Whereas, we also have error which is based on the variation shown 

when you repeat these experiments, either you repeat all the experiments or you repeat 

the experiments at the center point. What is really meant by center point, right now do 

not worry, we will come to it a bit later. We can look at the individual mean squares for 

example, compare the treatment a, with the variability shown by the error and get the 

appropriate f value. Obviously, if a treatment is very important then it will completely 

dominate, what will completely dominate? The mean squares of a will completely 

dominate over that of the error and so you will have a very high F value. 

Similarly for b, if the interaction effect is not important then what might happen is the 

mean square for ab would be comparable to that of the error, and you will get a value in 

the order of magnitude of 1 and that would indicate from the F probability chart that this 

variable is not important okay. There is something called as the p value, but I would 

leave that for you to understand yourself. It is quite straight forward; it has something to 

do with the type one error and okay no need to keep it in suspense; p value refers to the 

probability of committing the type one error. And obviously, if the F value is very, very 

high the p value would be very small, because you are going on to the tail end of the f 

distribution and the probability would be very small and so the probability of committing 

a type one error would be very small. So, I hope you know what is meant by type one 

error, if you don’t remember please go back to the previous lectures and then understand. 

Now that we have done some experiments and you analyzed them, carried out the 

experiments that repeats, put them in statistical software like mini tab, got the response 

plots, and you also know which variables are significant which variables are not 

significant and so on. There is another interesting thing you can do with your 

experimental data. Many researchers and students get pride if they develop their own 

mathematical model. So, we are not going to discuss about very fundamental first 

principles model, we are going to discuss about very simple models, these are called 

empirical polynomial regression models. And even though, they may not have much of a 

theoretical background they provide useful formulae, if you want to call it like that which 

can be used to predict the response at different factor settings. 
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So, now, we are getting into model building, which is based on experimental data. So, 

you have the process response, y is equal to beta naught plus beta 1 X 1 plus beta 2 X 2 

plus epsilon, here X 1 and X 2 are the variables or the factors. These are values taken by 

the variable 1 and the value were taken by variable 2. So, X 1 represents variable 1, and 

X 2 represents variable 2 and beta 1 and beta 2 are called as the partial regression 

coefficients associated with these variables 1 and 2. Beta naught is not associated with 

the any variable it has standing on its own it is the so called intercept, for example, if you 

write y is equal to m X plus b then the b is the intercept. So, beta naught is referred to 

commonly as the intercept, whereas the beta 1 and beta 2 are referred to here as the 

partial regression coefficients. 
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This is a very interesting diagram. You can see that the experimental data points are sort 

of scattered around a mean straight line. This is a true line okay, but the data points do 

not lie on the straight line that would have been an ideal occurrence or a intentional 

occurrence, but under usual circumstances, we can always find scatter of the 

experimental data around the straight line. So, beta naught and beta 1 are the true values 

of the parameters which unfortunately we do not know; and since we do not know beta 

naught and beta 1, we also do not know the value of the response y. 

Here, for the purpose of illustration, I am just taking a case where there is only one factor 

or variable influencing the response. So, we have these experimental responses as being 

distributed around a mean value given by beta naught plus beta 1 X. So, if you take the 

level for X as X 1 at this point then the actual true, but unknown value would be given 

by beta naught plus beta 1 X a, calling this point or calling this variable setting as X a. 

So, this is the true response, but the experimental data because of the randomly varying 

error component would be scattered and so this is where the point lies. 

We assumed that the errors are varying randomly with mean 0, and constant variance, so 

when you super impose the error effect on the response, the response is also normally 

distributed, but the mean value given by the true line equation and the variance given by 



 

 

sigma squared. Sigma squared is the error variance, which is assumed to be constant. 

Similarly, at the second location or second level for X, let us call it as b you find of 

response line below the true line. And by random fluctuations, the third value lies pretty 

close to the true response. So, in reality, we may never get to know, what is the true value 

of the parameter beta 1 and the true value of the parameter beta naught. So, through a 

linear regression analysis and your experimental data, we can only estimate the 

parameters beta naught and beta 1. 

So, each time you do an experiment, you will get different responses and each time you 

fit the data to the model, you may get different values of the parameters. So, this is 

because the random error component is influencing a response in several unknown ways 

which you cannot predict a priori and so that’s the reason, why your model parameters 

are coming slightly differently each time you do the experiment. So, you do not have to 

worry, if you do not get the same model parameters if you do the experiments several 

times; it is expected that this is going to happen. 

(Refer Slide Time: 15:22) 

 

We can have any number of variables okay; you do not get restrict yourself to one 

variable or two variables at the most. You can analyze several variables together and if 

you use the linear algebra concepts, it becomes very straightforward. So, when you have 



 

 

multiple variables, you have the multiple regression model but k regressor variables X 1, 

X 2, so on to X k. And again to retreat beta naught beta 1, beta 2, so on to beta k are 

called as partial regression coefficients. So, how many partial regression coefficients you 

have? It is k plus 1; we have k regressor variables and we have hence k partial regression 

coefficients associated with these k regressor variables. In addition to these, we also have 

the intercept which is beta naught, so we have k plus 1, unknown parameters we want to 

estimate; in some places we may refer to this k plus 1 as p. 
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Now, you have as I said earlier k regressor variables, but you are not going to do a single 

experiment involving different settings of these k regressor variables. You might to want 

to fix some variables and vary some variables; next time you may fix those variables and 

then vary some other set of variables so on. So, let us assume that you do this in a very 

systematic manner, and you have n such experiments or n such runs. So, you have now 

two subscripts i and j; one subscript referring to the run order okay; i is the run order, 

you can go from 1 to n and the j subscript referring to the index of the regressor variable 

okay. So, if I say X i 2 then I am referring to the ith run and the second regressor 

variable, I think now that should be clear to you. So, the ith run’s response Y i is given in 

this way, beta naught plus beta 1 X i 1 plus beta 2 X i 2 plus so on to beta k X i k plus 

epsilon i, i running from 1 to n. 



 

 

Obviously, n should be greater than k, if n is less than k you don’t have enough data to 

analyze problems satisfactorily. If you have n is equal to k even that is not sufficient 

because the total number of unknown parameters you want to estimate is in fact k plus 1, 

the partial regression coefficients for each of the regressor variable and then you also 

have the intercept. So, you have k plus 1 parameters to estimate and you need at least k 

plus 1 runs. So, if you have k plus 1 runs, and if you have k plus 1 parameters to estimate 

then you have an exact problem in the sense that your model will fit the experimental 

data perfectly because you are essentially solving an equation involving k plus 1 

variables and k plus 1 unknowns. 

But this is not really good because it shows that you have scaled up your regression 

model, you have introduced many terms in the regression model, and it is fitting your 

data properly. But this is not really good because you are taking up too many of the 

parameters, and the regression model may become also very unwieldy and complex to 

use. 

The beauty of a regression model is appreciated when it is very simple and even with the 

few parameters you are able to explain the process reasonably well. Anyway, we know 

that this is an empirical model and it is only applicable in the very narrow region 

occupied by the ranges of these variables; you cannot extrapolate this model all the time 

beyond the ranges of these variables. So, it’s a very simple model. So, better leave it as a 

simple model involving two or three parameters, and then see how this explains your 

experimental trend. 

Now, if you are familiar with linear algebra, you will easily appreciate what I am going 

to say it. Now, but even if you don’t know linear algebra or you have forgotten, it is very 

good time and opportunity to go through this concepts quickly and then understand what 

I am going to say next. In fact, linear algebra you don’t have to do research or going to 

very great depth, all you need to know is how to add matrices, subtract matrices, 

multiply matrices, and represent matrices first and then also some brief ideas about how 

to find Eigen values and Eigen vectors. 
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So, when you represent this in the matrix notation, you get nice compact forms. You have 

the Y column vector, which is comprising of the n experimental observations running 

from Y 1, Y 2 so on to Y n. Then you also have the X matrix, it’s a very important matrix 

which is having a column of one’s this corresponds to the intercept. I will come to this in 

a moment then you have X 11, X 11 represents the first run and the setting of the first 

factor or the first variable X 1. X 12 again refer’s to the first run, but it refers to the 

setting of the second factor or the second experimental variable X 2 and so on. Since we 

have k factors, this one runs all the way from X 11 to X 1 k; similarly you have the other 

entries in this matrix. 

For example, X n 2 will refer to the nth run and the setting of the second experimental 

factor or the experimental variable X 2. Now, let us look at the beta column vector. By 

now you should know that this comprises of beta naught which is the intercept and then 

beta 1 the partial regression coefficient to X 1 so on to beta k, which is a partial 

regression coefficient to X k. And this is the error term - the mysterious error term which 

is running from epsilon 1 epsilon 2 so on to epsilon n right. 
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So, you have y is equal to X beta plus epsilon. Now, we have to find the beta column 

vector. We have to estimate the values of beta naught, beta 1, so on to beta k. It looks like 

a very tough problem, because you are familiar with solving two equations and two 

unknowns and things like that even three equations in three unknowns becomes quite 

difficult to solve. But here it looks like, we are going to solve at least 10 variables, it may 

even be 20, I have seen very elaborate models involving a large number of variables to 

estimate. So, it looks like a very complex problem, but if you are familiar with linear 

algebra you will be able to easily appreciate how quickly we are able to solve even large 

systems of equations right. 

So, we do not know the true response because we do not know the true value of beta. So, 

what we instead do is try to estimate the response or try to estimate the parameters of this 

model, so that we can predict the response. So, we define our regression model as Y hat 

is equal to beta naught hat plus beta 1 hat X 1 plus beta 2 hat X 2 plus so on to beta hat k 

X k. So, this is very interesting. Now, we have put this hat on each of the parameters and 

also the response; this hat indicates that it’s a predicted response and not the 

experimental response. Again beta naught hat and beta 1 hat, etcetera refers to estimated 

parameters and not the true parameters. So, please be clear about the notation. 
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So, what do we actually do? We first construct the X prime X matrix, where X prime is 

the transpose of the X matrix. We saw the X matrix to be defined as shown in the slide, 

and the transpose of the X matrix is represented by X prime, and the X prime or the 

transpose of X simply involves interchanging the rows and columns of the X matrix, so 

to get X prime, interchange the rows and columns of the X matrix. 

(Refer Slide Time: 24:58) 

 



 

 

So, here if I put X prime, you will have 1 X 11 X 12 so on to X 1 k as the first column 

okay. So, I think you know transposes pretty well. So, you multiply X prime on X first. 
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And then this is pre-multiplying the column vector of the unknown parameters which 

required to be estimated. Then on the right hand side we have X prime Y, where X prime 

is again the transpose of the X matrix and Y is the matrix of responses. So, when you do 

that you are estimating beta hat to be X prime X inverse X prime Y okay. So, very 

quickly you should be able to get the estimated parameters. Doing the inversion and 

multiplying the matrices is a very simple task in many software; MATLAB you might be 

familiar or Scilab you may be using, where all these matrix manipulations are done very 

quickly and in a very simple manner. 
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Okay now, we are looking at something, which is apparently very complicated; it’s in 

fact quite straight forward, you do not want have to worry too much about it. We have 

the sum of squares of the error. The error component is very essential to see if your 

regression parameters are significant or not whether the model parameters you have 

estimated, how many of them are indeed having an impact on the process response and 

how many of them are dud parameters which are of little value. So, to do that we have to 

find the sum of squares of the errors; you might have already come across the sum of 

squares of the errors in earlier analysis of variance tables. 

So, how do we find that we subtract beta hat prime X prime Y from Y prime Y. This can 

also be written as shown here. And the first term in the bracket refers to total sum of 

squares, and the second term in the brackets is the regression sum of squares. Ideally you 

would like to have the total sum of squares to be equal to the regression sum of squares, 

but it never happens the total sum of squares often exceeds our regression sum of squares 

and more the difference between the two; more is the contribution from the random error 

component. So, we have the total sum of squares minus the regression sum of squares 

giving the error sum of squares. 
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So, again we come to the very familiar by now analysis of variance table, where we have 

the source of variation in the first column, sum of squares in the second column, degrees 

of freedom in the third column, mean square in the fourth, and the F value in the fifth. 

So, we compare the regression sum of squares with the error sum of squares and not 

immediately, we first have to find the mean squares. So, we scaled the regression sum of 

squares with the degrees of freedom with the regression sum of squares and so we have 

SS R by k, which will give you the mean square regression. Similarly, sum of squares of 

error divided by n minus k minus 1, which is the degrees of freedom associated with the 

error component and that would give you the mean square error. The ratio of MS R to 

MS E will give you the F value. 

I am not really getting into how you calculate the degrees of freedom for each of these 

contributions, regression and error. It is very interesting I hope you will be sufficiently 

interested and motivated to find out how, for example, the regression sum of squares has 

k degrees of freedom, while the error sum of squares has n minus k minus 1 degrees of 

freedom, the total number of degrees of freedom is simply the addition of these two and 

it becomes n minus 1; and the addition of sum of squares of regression and sum of 

squares of error is the total sum of squares. 
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Many researchers in their publications proudly present their experimental results and 

save they got an R squared value of 0.99 or 0.991, sometimes they may even say 1, what 

is meant by the coefficient of determination? R squared is the short form or the 

nomenclature for the coefficient of determination. So, this represents the proportion of 

the total variability accounted or explained by the linear regression model. Experiments 

means variations or variability and you are developing the mathematical model. If all the 

variability or variations are completely described by the proposed model, it looks like 

you have solved the problem or cracked the problem, and you are getting an R squared 

value of 1. You will get an R squared value of 1, the number of variables you want to 

estimate is equal to the number of experimental runs then you are solving the linear 

algebraic problem and not an actual statistical regression analysis problem. So, you will 

always get R squared is equal to 1. 

Another way you will get R squared close to one would be keep on adding more and 

more useless terms to your regression model, you can put beta 11 X 1 squared beta 22 X 

2 squared and so on. It may look as if you are introducing some non-linearity or 

curvature into your model, but as long as the coefficients are still remaining as beta 11 

and beta 22, it remains as a regression model. So, you add under another or additional 

columns corresponding to X 1 squared and X 2 squared into your design matrix X and 



 

 

then manipulate it in the same way to get the regression parameters. So, we are still in 

the subject of R squared, so don’t aim for unrealistically high value of R squared, just 

because you want to make it as perfect as possible. In fact, a regression model with the R 

squared value of 0.84 may be probably more robust, and probably more informative and 

reliable than a regression model, which is having 15 parameters and then R squared 

value of 1. Such a model may be in fact, unstable and very sensitive. So, how to quantify 

which is an acceptable R squared? 
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We do something called as adjusted R squared which penalizes the R squared, if you are 

introducing too many parameters. So, now, we have adjusted R squared defined to be 1 

minus sum of square of error by n minus p, by total sum of squares by n minus 1. So, we 

are getting 1 minus mean square error and divided by mean square total. So, essentially 

when the number of parameters increases, as I told you earlier p is equal to k plus 1. So, 

when p increases, this term n minus p will decrease, so the numerator term will start to 

increase. When the numerator term starts to increase then the R squared value or the 

adjusted R squared value will start to decrease. So, this tells us that even though R 

squared value is increasing; the adjusted R squared value may decrease because of this n 

minus p effect okay. Only when you are adjusted R squared also increases with 



 

 

increasing number of parameters then those parameters are required to improve the 

models predicting capability. 

What I am trying to say here is if the mean square error term it has two components, the 

sum of squares of error and n minus p. When you add the additional parameter, if the 

sum of the squares of error comes down considerably then that would have a greater 

reduction than the increase caused by decrease in n minus p. So, I think if you look at it 

carefully, you will able to appreciate if SS error decreases at a faster rate than the 

decrease in n minus p, then there would be a reduction in the numerator overall 

numerator here, and you are adjusted R squared will in fact increase. So, any way don’t 

only look at R squared, but also please look at adjusted R squared to see whether the R 

squared adjusted is increasing or decreasing with the addition of more parameters. If 

adjusted R squared is decreasing with the addition of more parameters then you better 

not add those parameters, and leave with the simpler model. 

Okay now, when you look at experimental design papers of the literature they keep 

harping on the second order models, why so much first on the second order models, 

when you look at the experimental design space it is no longer planar, but it may be 

marked by peaks and and/or valleys. Peak is mountain kind of thing and a valley is a 

depression kind of geography in the experimental response space. 
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So, in order to capture these peaks and valleys, second order models are required and the 

moment you talk about peaks and valleys you are also looking at the best possible 

optimum condition or the best possible minimum condition. Sometimes the optimum can 

be maximum, and in some other cases optimum may be the lowest value okay. So, we 

have to make sure that we find the correct optimum. There can be multiple peaks and 

multiple valleys, and we should not be satisfied with the sub optimal solution. 
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Okay so, now, how do we represent the second order models? So, this is the form of the 

second order model. It is not very complicated. Even though it looks to be like that y is 

equal to beta naught plus sigma is equal to 1 beta i X i and then you have sigma i less 

than j j equals 2 to k beta i j X i X j plus the sigma equals to 1 to k beta i i X i squared 

plus epsilon okay. This not as complicated as it looks the first one is the combination of 

the symbol factors; the second one is the combination of all possible interactions 

involved between the factors, and then you also have the quadratic term effect X 1 

squared and X 2 squared. For example, if you are talking about two factors or two 

variables, you will have beta naught plus beta 1 X 1 plus beta 2 X 2 plus beta 12 X 1 X 

2, and then you will have beta 11 X 1 squared plus beta 22 X 2 squared plus the error 

component. For a general case, you can find out how many parameters you want to 

estimate, based on this model structure okay. I think we will stop now and continue in 

the next class. 

Thanks for your attention. 


